skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meza-Torres, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Students’ Dispositions toward Scientific Uncertainty Navigation (DSUN) can play a pivotal role in impacting student learning achievement. However, understanding of the underlying mechanism of DSUN influencing learning achievement is limited. Drawing from related research, this study investigates the roles of epistemic curiosity and learning engagement in mediating the relationship between DSUN and learning achievement. A survey study design was employed, involving 1,137 middle school students who participated in an uncertainty-driven learning environment when learning solar energy. A sequential mediation model was tested using data collected through validated measures assessing DSUN, epistemic curiosity, learning engagement, and learning achievement. Results revealed that while DSUN positively predicts learning achievement, this relationship is sequentially mediated by epistemic curiosity and learning engagement, with epistemic curiosity not serving as a significant mediator on its own. These findings underscore the importance of fostering both epistemic curiosity and engagement in science classroom activities when students encounter scientific uncertainty. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available June 8, 2026
  3. Abstract Grappling with uncertainty is an essential element of students' science learning and sense‐making processes, yet literature is limited regardinghowteachers can facilitate and use student scientific uncertainty as a pedagogical resource in their classrooms. Furthermore, progress on pedagogical practice depends on both the ability to notice one's perceptions and engage in opportunities to experience and reflect on new instructional approaches. To date, there are few professional development experiences explored in literature that explicitly aim to enhance teachers' awareness and pedagogical practice regarding the use and facilitation of student scientific uncertainty. As such, this qualitative study follows a group of 11 middle school science teachers before and after participating in a week‐long practice‐based professional development (P‐BPD) specifically designed to foster teachers' ability to use student uncertainty as a pedagogical resource. Interviews were conducted and analyzed prior to the P‐BPD, immediately after the P‐BPD, and the year following to measure shifts in perceptions over time. Additionally, classroom practice was observed both before and the year following the P‐BPD. Overall, we found that teachers' awareness of how to use student scientific uncertainty grew both in their expressed perceptions and in their observed classroom enactment. After engaging in the P‐BPD, many teachers expressed an enhanced awareness of the productive potential uncertainty can have, as well as increased understanding of potential sources and responses to student uncertainty. Additionally, in the post‐implementation observations, most of the teachers demonstrated more diverse use of uncertainty navigation strategies, intentionally raising, maintaining, and reducing scientific uncertainty more often. Teachers were observed using student ideas and uncertainties to drive the trajectory of their lessons more consistently. Notably, we report counterexamples for teachers who demonstrated less or no shifts in perceptions or practice. Furthermore, teachers explicitly identified experiences from the P‐BPD that fostered shifts in both their perceptions and practice. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Lindgren, Robb; Asino, Tutaleni; Kyza, Eleni; Looi, CheeKit; Keifert, Teo; Suárez, Enrique (Ed.)
    Students need learning experiences that build capacities to agentively engage with issues challenging our world today. Teachers are often under-supported in endeavors to facilitate such learning experiences. Grounded in principles of consequential learning and expansive framing, this design-based research study sought to better understand the ways in which STEM teachers support students’ real work in the world as members of a school-based citizen science lab. Qualitative analysis of transcripts from teachers’ post-professional development and post-enactment interviews was used to characterize the ways teachers frame roles, goals, and community relationships intended to support students’ real work with real consequences. Findings illuminate ways teachers foster consequential STEM learning and suggest design principles for supporting teachers’ ongoing learning for and facilitation of real work with real consequences. 
    more » « less
  5. Lindgren, Robb; Asino, Tutaleni; Kyza, Eleni; Looi, Chee-Kit; Keifert, Teo; Suárez, Enrique (Ed.)
    A limiting factor in school-based citizen science is teachers’ capacity to facilitate active student engagement in place-based inquiry practices. We extend Harris and colleagues’ student data interaction constructs of visibility, believability and meaningfulness using a design-based research approach to qualitatively examine professional development structures designed to enable teachers to foster students’ contributions as visible, believable, and meaningful. 
    more » « less
  6. Science practice introduces inevitable uncertainties that are desirable for learning. Yet, navigating student scientific uncertainties can be a challenge for teachers. This qualitative study explored how teachers perceive and utilize uncertainty during science instruction. Analysis of interviews and classroom observations collected from 14 middle school teachers in the United States indicated limited awareness of uncertainty’s use as a resource in science. Teachers perceived uncertainty as a way to induce curiosity and persist through struggle; however, they were quick to reduce students’ scientific uncertainty throughout lessons. Findings suggest that teachers need support to understand how uncertainty navigation can benefit student learning. 
    more » « less